Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Cell Physiol ; 239(4): e31204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38419397

RESUMEN

Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.


Asunto(s)
Factor de Transcripción Activador 4 , Enfermedades Neurodegenerativas , Animales , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Lípidos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Neurodegenerativas/patología , Masculino , Ratones Endogámicos C57BL , Células Cultivadas , GTP Fosfohidrolasas/metabolismo
2.
Neuropsychopharmacology ; 49(5): 864-875, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37848733

RESUMEN

Psychiatric and obstetric diseases are growing threats to public health and share high rates of co-morbidity. G protein-coupled receptor signaling (e.g., vasopressin, serotonin) may be a convergent psycho-obstetric risk mechanism. Regulator of G Protein Signaling 2 (RGS2) mutations increase risk for both the gestational disease preeclampsia and for depression. We previously found preeclampsia-like, anti-angiogenic obstetric phenotypes with reduced placental Rgs2 expression in mice. Here, we extend this to test whether conserved cerebrovascular and serotonergic mechanisms are also associated with risk for neurobiological phenotypes in the Rgs2 KO mouse. Rgs2 KO exhibited anxiety-, depression-, and hedonic-like behaviors. Cortical vascular density and vessel length decreased in Rgs2 KO; cortical and white matter thickness and cell densities were unchanged. In Rgs2 KO, serotonergic gene expression was sex-specifically changed (e.g., cortical Htr2a, Maoa increased in females but all serotonin targets unchanged or decreased in males); redox-related expression increased in paraventricular nucleus and aorta; and angiogenic gene expression was changed in male but not female cortex. Whole-cell recordings from dorsal raphe serotonin neurons revealed altered 5-HT1A receptor-dependent inhibitory postsynaptic currents (5-HT1A-IPSCs) in female but not male KO neurons. Additionally, serotonin transporter blockade by the SSRI sertraline increased the amplitude and time-to-peak of 5-HT1A-IPSCs in KO neurons to a greater extent than in WT neurons in females only. These results demonstrate behavioral, cerebrovascular, and sertraline hypersensitivity phenotypes in Rgs2 KOs, some of which are sex-specific. Disruptions may be driven by vascular and cell stress mechanisms linking the shared pathogenesis of psychiatric and obstetric disease to reveal future targets.


Asunto(s)
Preeclampsia , Serotonina , Humanos , Femenino , Masculino , Ratones , Embarazo , Animales , Serotonina/metabolismo , Sertralina , Preeclampsia/metabolismo , Placenta/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Ratones Noqueados , Receptor de Serotonina 5-HT1A/metabolismo
3.
Sci Rep ; 12(1): 21922, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604494

RESUMEN

Placenta accreta spectrum (PAS) is characterized by abnormal attachment of the placenta to the uterus, and attempts at placental delivery can lead to catastrophic maternal hemorrhage and death. Multidisciplinary delivery planning can significantly improve outcomes; however, current diagnostics are lacking as approximately half of pregnancies with PAS are undiagnosed prior to delivery. This is a nested case-control study of 35 cases and 70 controls with the primary objective of identifying circulating microparticle (CMP) protein panels that identify pregnancies complicated by PAS. Size exclusion chromatography and liquid chromatography with tandem mass spectrometry were used for CMP protein isolation and identification, respectively. A two-step iterative workflow was used to establish putative panels. Using plasma sampled at a median of 26 weeks' gestation, five CMP proteins distinguished PAS from controls with a mean area under the curve (AUC) of 0.83. For a separate sample taken at a median of 35 weeks' gestation, the mean AUC was 0.78. In the second trimester, canonical pathway analyses demonstrate over-representation of processes related to iron homeostasis and erythropoietin signaling. In the third trimester, these analyses revealed abnormal immune function. CMP proteins classify PAS well prior to delivery and have potential to significantly reduce maternal morbidity and mortality.


Asunto(s)
Placenta Accreta , Placenta Previa , Embarazo , Femenino , Humanos , Placenta Accreta/diagnóstico , Estudios de Casos y Controles , Placenta , Tercer Trimestre del Embarazo , Estudios Retrospectivos
4.
Pregnancy Hypertens ; 31: 1-3, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36435036

RESUMEN

Arginine vasopressin (AVP) signaling is altered in preeclampsia and physiologic stress. AVP is implicated in fluid homeostasis and cardiovascular (CV) function, which is disrupted in some progeny from preeclamptic pregnancies. However, whether altered fetal AVP signaling occurs in preeclampsia is unknown. Here, we measured CV-related transcripts (e.g., AVP receptors) in cord blood via quantitative PCR. Chronic hypertension decreased AVPR1b, AVPR2, OXTR, LNPEP, and CUL5. AVPR1a, AVPR1b, and AVPR2 were decreased while OXTR was increased in preeclamptic cord blood. In sum, we found prenatal exposure to hypertension in pregnancy alters fetal AVP signaling and may thereby prime offspring CV disease risk.


Asunto(s)
Hipertensión , Preeclampsia , Embarazo , Femenino , Humanos , Receptores de Vasopresinas/metabolismo , Sangre Fetal/metabolismo , Arginina Vasopresina/metabolismo , Arginina Vasopresina/farmacología , Proteínas Cullin
5.
Pregnancy Hypertens ; 30: 36-43, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35963154

RESUMEN

Serotonin modulates vascular, immune, and neurophysiology and is dysregulated in preeclampsia. Despite biological plausibility that selective serotonin reuptake inhibitors (SSRIs) prevent preeclampsia pathophysiology, observational studies have indicated increased risk and providers may be hesitant. The objective of this meta-analysis and quality assessment was to evaluate the evidence linking SSRI use in pregnancy to preeclampsia/gestational hypertension. PubMed was searched through June 5, 2020 manually and using combinations of terms: "preeclampsia", "serotonin", and "SSRI". This review followed MOOSE guidelines. Inclusion criteria were: 1) Observational cohort or population study, 2) exposure defined as SSRI use during pregnancy, 3) cases defined as preeclampsia or gestational hypertension, and 4) human participants. Studies were selected that addressed the hypothesis that gestational SSRI use modulates preeclampsia and/or gestational hypertension risk. Review Manager Web was used to synthesize study findings. Articles were read and scored (Newcastle-Ottawa Quality Assessment Scale) for quality by two independent reviewers. Publication bias was assessed using a funnel plot and the Egger test. Of 179 screened studies, nine were included. The pooled risk ratio (random effects model) was 1.43 (95 % CI: 1.15-1.78, P < 0.001; range 0.96-4.86). Two studies were rated as moderate quality (both with total score of 6); others were high quality. Heterogeneity was high (I2 = 88 %) and funnel asymmetry was significant (p < 0.00001). Despite evidence for increased preeclampsia risk with SSRIs, shared risk factors and other variables are poorly controlled. Depression treatment should not be withheld due to perceived gestational hypertension risk. Mechanistic evidence for serotonin modulation in preeclampsia demonstrates a need for future research.


Asunto(s)
Hipertensión Inducida en el Embarazo , Preeclampsia , Embarazo , Femenino , Humanos , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Hipertensión Inducida en el Embarazo/epidemiología , Preeclampsia/epidemiología , Estudios de Cohortes , Factores de Riesgo
6.
Cardiovasc Res ; 118(3): 772-784, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-33914863

RESUMEN

AIMS: The F-actin-binding protein Drebrin inhibits smooth muscle cell (SMC) migration, proliferation, and pro-inflammatory signalling. Therefore, we tested the hypothesis that Drebrin constrains atherosclerosis. METHODS AND RESULTS: SM22-Cre+/Dbnflox/flox/Ldlr-/- (SMC-Dbn-/-/Ldlr-/-) and control mice (SM22-Cre+/Ldlr-/-, Dbnflox/flox/Ldlr-/-, and Ldlr-/-) were fed a western diet for 14-20 weeks. Brachiocephalic arteries of SMC-Dbn -/-/Ldlr-/- mice exhibited 1.5- or 1.8-fold greater cross-sectional lesion area than control mice at 14 or 20 weeks, respectively. Aortic atherosclerotic lesion surface area was 1.2-fold greater in SMC-Dbn-/-/Ldlr-/- mice. SMC-Dbn-/-/Ldlr-/- lesions comprised necrotic cores that were two-fold greater in size than those of control mice. Consistent with their bigger necrotic core size, lesions in SMC-Dbn-/- arteries also showed more transdifferentiation of SMCs to macrophage-like cells: 1.5- to 2.5-fold greater, assessed with BODIPY or with CD68, respectively. In vitro data were concordant: Dbn-/- SMCs had 1.7-fold higher levels of KLF4 and transdifferentiated to macrophage-like cells more readily than Dbnflox/flox SMCs upon cholesterol loading, as evidenced by greater up-regulation of CD68 and galectin-3. Adenovirally mediated Drebrin rescue produced equivalent levels of macrophage-like transdifferentiation in Dbn-/- and Dbnflox/flox SMCs. During early atherogenesis, SMC-Dbn-/-/Ldlr-/- aortas demonstrated 1.6-fold higher levels of reactive oxygen species than control mouse aortas. The 1.8-fold higher levels of Nox1 in Dbn-/- SMCs were reduced to WT levels with KLF4 silencing. Inhibition of Nox1 chemically or with siRNA produced equivalent levels of macrophage-like transdifferentiation in Dbn-/- and Dbnflox/flox SMCs. CONCLUSION: We conclude that SMC Drebrin limits atherosclerosis by constraining SMC Nox1 activity and SMC transdifferentiation to macrophage-like cells.


Asunto(s)
Aterosclerosis , Transdiferenciación Celular , Miocitos del Músculo Liso , Neuropéptidos/genética , Animales , Aterosclerosis/genética , Aterosclerosis/prevención & control , Células Cultivadas , Estudios Transversales , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 1/genética
7.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34577642

RESUMEN

Elevated expression of placenta-specific protein 1 (PLAC1) is associated with the increased proliferation and invasiveness of a variety of human cancers, including ovarian cancer. Recent studies have shown that the tumor suppressor p53 directly suppresses PLAC1 transcription. However, mutations in p53 lead to the loss of PLAC1 transcriptional suppression. Small molecules that structurally convert mutant p53 proteins to wild-type conformations are emerging. Our objective was to determine whether the restoration of the wild-type function of mutated p53 could rescue PLAC1 transcriptional suppression in tumors harboring certain TP53 mutations. Ovarian cancer cells OVCAR3 and ES-2, both harboring TP53 missense mutations, were treated with the p53 reactivator HO-3867. Treatment with HO-3867 successfully rescued PLAC1 transcriptional suppression. In addition, cell proliferation was inhibited and cell death through apoptosis was increased in both cell lines. We conclude that the use of HO-3867 as an adjuvant to conventional therapeutics in ovarian cancers harboring TP53 missense mutations could improve patient outcomes. Validation of this conclusion must, however, come from an appropriately designed clinical trial.

9.
Arterioscler Thromb Vasc Biol ; 39(2): 224-236, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30580571

RESUMEN

Objective- PDI (protein disulfide isomerase A1) was reported to support Nox1 (NADPH oxidase) activation mediated by growth factors in vascular smooth muscle cells. Our aim was to investigate the molecular mechanism by which PDI activates Nox1 and the functional implications of PDI in Nox1 activation in vascular disease. Approach and Results- Using recombinant proteins, we identified a redox interaction between PDI and the cytosolic subunit p47phox in vitro. Mass spectrometry of crosslinked peptides confirmed redox-dependent disulfide bonds between cysteines of p47phox and PDI and an intramolecular bond between Cys 196 and 378 in p47phox. PDI catalytic Cys 400 and p47phox Cys 196 were essential for the activation of Nox1 by PDI in vascular smooth muscle cells. Transfection of PDI resulted in the rapid oxidation of a redox-sensitive protein linked to p47phox, whereas PDI mutant did not promote this effect. Mutation of p47phox Cys 196, or the redox active cysteines of PDI, prevented Nox1 complex assembly and vascular smooth muscle cell migration. Proximity ligation assay confirmed the interaction of PDI and p47phox in murine carotid arteries after wire injury. Moreover, in human atheroma plaques, a positive correlation between the expression of PDI and p47phox occurred only in PDI family members with the a' redox active site. Conclusions- PDI redox cysteines facilitate Nox1 complex assembly, thus identifying a new mechanism through which PDI regulates Nox activity in vascular disease.


Asunto(s)
Disulfuros/química , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 1/metabolismo , NADPH Oxidasas/química , Proteína Disulfuro Isomerasas/química , Animales , Movimiento Celular , Células Cultivadas , Activación Enzimática , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Oxidación-Reducción , Superóxidos/metabolismo
10.
Gynecol Oncol ; 147(3): 648-653, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28969912

RESUMEN

OBJECTIVE: Endometrial cancer can be diagnosed early and cured, yet cases that recur portend a very poor prognosis with over 10,000 women succumbing to the disease every year. In this study we addressed the question of how to recognize cases likely to recur early in the course of therapy using dysregulation of tumor microRNAs (miRNAs) as predictors. METHODS: Using the tissue collection from Gynecologic Oncology Group Study-210, we selected and analyzed expression of miRNAs in 54 recurrent and non-recurrent cases. The three most common histologic types, endometrioid adenocarcinoma (EEA), serous adenocarcinoma (ESA) and carcinosarcoma (UCS), were analyzed as three independent sets and their miRNA expression profiles compared. RESULTS: Only one miRNA was statistically different between recurrent and non-recurrent cases, and in only one histologic type: significant down-regulation of miR-181c was observed in EEA recurrence. Using several well-known databases to assess miR-181c targets, one target of particular relevance to cancer, NOTCH2, was well supported. Using The Cancer Genome Atlas and our validation tumor panel from the GOG-210 cohort, we confirmed that NOTCH2 is significantly over-expressed in EEA. In the most relevant endometrial adenocarcinoma cell model, Ishikawa H, altering miR-181c expression produces significant changes in NOTCH2 expression, consistent with direct targeting. CONCLUSIONS: Our findings suggest that increased NOTCH2 via loss of miR-181c is a significant component of EEA recurrence. This presents an opportunity to develop miR-181c and NOTCH2 as markers for early identification of high risk cases and the use of NOTCH inhibitors in the prevention or treatment of recurrent disease.


Asunto(s)
Carcinoma Endometrioide/genética , Neoplasias Endometriales/genética , MicroARNs/biosíntesis , Recurrencia Local de Neoplasia/genética , Receptor Notch2/biosíntesis , Carcinoma Endometrioide/metabolismo , Neoplasias Endometriales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Recurrencia Local de Neoplasia/metabolismo , Receptor Notch2/genética
11.
Int J Gynecol Cancer ; 27(4): 784-790, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28375929

RESUMEN

OBJECTIVE: Expression of the trophoblast-specific gene placenta-specific protein 1 (PLAC1) has been detected in a wide variety of cancers. However, to date, PLAC1 expression has not been shown in cervical cancer. We have carried out a preliminary study that shows for the first time that PLAC1 is expressed in cervical cancers. METHODS: A total of 16 primary cervical tumors were obtained from patients shown to be human papillomavirus (HPV) 16/18 positive. Total cellular RNA, genomic DNA, and total protein were purified from each tumor. These materials were then used to determine PLAC1 expression, TP53 mutation status, and p53 expression. RESULTS: The PLAC1 expression was demonstrated in all 16 primary cervical tumors. The highest levels of expression were found in the more aggressive squamous and adenosquamous histologic types compared with adenocarcinomas. Moreover, the proportion of total PLAC1 message coming from the P1 promoter, also termed the distal or cancer promoter, was significantly greater in the more aggressive squamous and adenosquamous histologic types compared with adenocarcinomas. Finally, in spite of all 16 tumors being HPV-16/18 positive, 3 of 8 squamous cell cancers and 2 of 5 adenocarcinomas expressed wild-type p53 protein. Consistent with the recently shown suppression of the PLAC1P1 promoter by wild-type p53, these p53 positive tumors displayed among the lowest P1-specific PLAC1 expression levels. CONCLUSIONS: The PLAC1 expression has been demonstrated for the first time in cervical cancers. This preliminary study has further revealed a complex relationship between PLAC1 expression, cervical cancer histologic type, p53, and HPV type that requires further investigation.


Asunto(s)
Papillomavirus Humano 16/aislamiento & purificación , Papillomavirus Humano 18/aislamiento & purificación , Infecciones por Papillomavirus/metabolismo , Proteínas Gestacionales/biosíntesis , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/virología , Adulto , Anciano , Anciano de 80 o más Años , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Femenino , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Persona de Mediana Edad , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Proteínas Gestacionales/genética , Regiones Promotoras Genéticas , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
12.
Int J Oncol ; 50(5): 1721-1728, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28339050

RESUMEN

Placenta-specific protein 1 (PLAC1) expression is co-opted in numerous human cancers. As a consequence of PLAC1 expression, tumor cells exhibit enhanced proliferation and invasiveness. This characteristic is associated with increased aggressiveness and worse patient outcomes. Recently, the presence of the tumor suppressor p53 was shown in vitro to inhibit PLAC1 transcription by compromising the P1, or distal/cancer, promoter. We sought to determine if this phenomenon occurs in primary patient tumors as well. Furthermore, we wanted to know if p53 mutation influenced PLAC1 expression as compared with wild-type. We chose to study serous ovarian tumors as they are well known to have a high rate of p53 mutation. We report herein that the phenomenon of PLAC1 transcription repression does occur in serous ovarian carcinomas but only when TP53 is wild-type. We find that mutant or absent p53 protein de-represses PLAC1 transcription. We further propose that the inability of mutant p53 to repress PLAC1 transcription is due to the fact that the altered TP53 protein is unable to occupy a putative p53 binding site in the PLAC1 P1 promoter thus allowing transcription to occur. Finally, we show that PLAC1 transcript number is significantly negatively correlated with patient survival in our samples. Thus, we suggest that characterizing tumors for TP53 mutation status, p53 protein status and PLAC1 transcription could be used to predict likely prognosis and inform treatment options in patients diagnosed with serous ovarian cancer.


Asunto(s)
Cistadenocarcinoma Seroso/genética , Neoplasias Ováricas/genética , Proteínas Gestacionales/biosíntesis , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Cistadenocarcinoma Seroso/patología , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Mutación , Neoplasias Ováricas/patología , Embarazo , Proteínas Gestacionales/genética , Pronóstico , Regiones Promotoras Genéticas
13.
Oncol Rep ; 35(4): 2461-5, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26847831

RESUMEN

Altered expression of cullin-5 (CUL5), a member of the cullin-RING E3 ubiquitin ligase family, has been implicated in a number of types of cancers including breast, cervical and hepatocellular cancers. In the present study, we found that CUL5 expression was significantly decreased in both endometrioid and serous endometrial adenocarcinomas with the more aggressive serous type displaying a higher reduction (-4.3-fold) than the less aggressive endometrioid type (-2.9-fold). Overexpression of CUL5 mRNA and protein in Ishikawa H endometrial cancer cells resulted in decreased cell proliferation and in a reduction in CUL5-RING E3 ligase downstream clients JAK2 and FAS-L. Finally, we demonstrated for the first time that CUL5 is a direct target of miR-182 that we previously showed to be significantly overexpressed in endometrial adenocarcinomas and we provided evidence that increased miR-182 expression is, at least in part, a result of demethylation of its upstream promoter. These data suggest a cascade in which miR-182 expression is epigenetically increased leading to decreased CUL5 expression and increased cellular proliferation. The final step in the cascade may be operating through a decrease in ubiquitination of pro-growth CUL5 ubiquitin ligase clients. This cascade offers a series of potential interventional steps involving epigenetic modification, miRNA and/or gene targeting and ubiquitination.


Asunto(s)
Carcinoma Endometrioide/genética , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Regulación hacia Abajo , Neoplasias Endometriales/genética , MicroARNs/genética , Regiones no Traducidas 3' , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/patología , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Transducción de Señal
14.
Mol Ther ; 24(4): 779-87, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26732878

RESUMEN

Inhibition of vascular smooth muscle cell (VSMC) proliferation by drug eluting stents has markedly reduced intimal hyperplasia and subsequent in-stent restenosis. However, the effects of antiproliferative drugs on endothelial cells (EC) contribute to delayed re-endothelialization and late stent thrombosis. Cell-targeted therapies to inhibit VSMC remodeling while maintaining EC health are necessary to allow vascular healing while preventing restenosis. We describe an RNA aptamer (Apt 14) that functions as a smart drug by preferentially targeting VSMCs as compared to ECs and other myocytes. Furthermore, Apt 14 inhibits phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) and VSMC migration in response to multiple agonists by a mechanism that involves inhibition of platelet-derived growth factor receptor (PDGFR)-ß phosphorylation. In a murine model of carotid injury, treatment of vessels with Apt 14 reduces neointimal formation to levels similar to those observed with paclitaxel. Importantly, we confirm that Apt 14 cross-reacts with rodent and human VSMCs, exhibits a half-life of ~300 hours in human serum, and does not elicit immune activation of human peripheral blood mononuclear cells. We describe a VSMC-targeted RNA aptamer that blocks cell migration and inhibits intimal formation. These findings provide the foundation for the translation of cell-targeted RNA therapeutics to vascular disease.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Neointima/terapia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Semivida , Humanos , Ratones , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/citología , Neointima/metabolismo , Fosforilación , Ratas
15.
Clin Sci (Lond) ; 130(3): 151-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26678171

RESUMEN

Since its discovery in 1999, a number of studies have evaluated the role of Nox1 NADPH oxidase in the cardiovascular system. Nox1 is activated in vascular cells in response to several different agonists, with its activity regulated at the transcriptional level as well as by NADPH oxidase complex formation, protein stabilization and post-translational modification. Nox1 has been shown to decrease the bioavailability of nitric oxide, transactivate the epidermal growth factor receptor, induce pro-inflammatory signalling, and promote cell migration and proliferation. Enhanced expression and activity of Nox1 under pathologic conditions results in excessive production of reactive oxygen species and dysregulated cellular function. Indeed, studies using genetic models of Nox1 deficiency or overexpression have revealed roles for Nox1 in the pathogenesis of cardiovascular diseases ranging from atherosclerosis to hypertension, restenosis and ischaemia/reperfusion injury. These data suggest that Nox1 is a potential therapeutic target for vascular disease, and drug development efforts are ongoing to identify a specific bioavailable inhibitor of Nox1.


Asunto(s)
Enfermedades Cardiovasculares/etiología , NADPH Oxidasas/metabolismo , Animales , Enfermedades Cardiovasculares/enzimología , Humanos , Isoenzimas/metabolismo , Estructura Molecular , Terapia Molecular Dirigida , NADPH Oxidasa 1 , NADPH Oxidasas/química
16.
Oncol Rep ; 33(2): 533-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25422049

RESUMEN

In breast cancers, the large conductance Ca2+ and voltage sensitive K+ (BKCa) channels have been hypothesized to function as oncoproteins, yet it remains unclear how inhibition of channel activity impacts oncogenesis. We demonstrated herein that iberiotoxin (IbTX), an inhibitor of BKCa channels, differentially modulated the in vitro tumorigenic activities of hormone-independent breast cancer cells. Specifically, in HER-2/neu-overexpressing UACC893 cells and triple­negative MDA-MB-231 cells, IbTX selectively attenuated anchorage-independent growth with concomitant downregulation of ß-catenin as well as total and phosphorylated Akt and HER-2/neu. By contrast, HER-2/neu-overexpressing SK-BR-3 cells were insensitive to IbTX. Molecular analyses showed an absence of ß-catenin and a dose-dependent upregulation of total and phosphorylated Akt and HER-2/neu in these cells. Taken together, these studies identify ß-catenin as a putative modulator of the inhibitory actions of IbTX in sensitive breast cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Péptidos/farmacología , Vía de Señalización Wnt , beta Catenina/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/genética
17.
Circ Res ; 115(11): 911-8, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25228390

RESUMEN

RATIONALE: Activation of Nox1 initiates redox-dependent signaling events crucial in the pathogenesis of vascular disease. Selective targeting of Nox1 is an attractive potential therapy, but requires a better understanding of the molecular modifications controlling its activation. OBJECTIVE: To determine whether posttranslational modifications of Nox1 regulate its activity in vascular cells. METHODS AND RESULTS: We first found evidence that Nox1 is phosphorylated in multiple models of vascular disease. Next, studies using mass spectroscopy and a pharmacological inhibitor demonstrated that protein kinase C-beta1 mediates phosphorylation of Nox1 in response to tumor necrosis factor-α. siRNA-mediated silencing of protein kinase C-beta1 abolished tumor necrosis factor-α-mediated reactive oxygen species production and vascular smooth muscle cell migration. Site-directed mutagenesis and isothermal titration calorimetry indicated that protein kinase C-beta1 phosphorylates Nox1 at threonine 429. Moreover, Nox1 threonine 429 phosphorylation facilitated the association of Nox1 with the NoxA1 activation domain and was necessary for NADPH oxidase complex assembly, reactive oxygen species production, and vascular smooth muscle cell migration. CONCLUSIONS: We conclude that protein kinase C-beta1 phosphorylation of threonine 429 regulates activation of Nox1 NADPH oxidase.


Asunto(s)
NADH NADPH Oxidorreductasas/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Aorta/citología , Sitios de Unión , Movimiento Celular , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Mutación , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/genética , NADPH Oxidasa 1 , Fosforilación , Unión Proteica , Proteína Quinasa C beta/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/química , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Biomed Rep ; 2(3): 384-387, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24748979

RESUMEN

microRNAs (miRNAs) are involved in almost all normal and pathogenic eukaryotic cell processes. One area in which the influence of miRNAs is most prominent is cancer. Numerous expression surveys and more focused studies have revealed miRNA involvement in carcinogenesis, cellular pathology, cell behavior and prognosis. Large-scale comparisons of miRNA expression in varioius types of cancer have not been previously possible. However, The Cancer Genome Atlas (TCGA), an extensive multi-centered effort to characterize the genomes of hundreds of types of cancer, has enabled such comparisons. In the present study, the expression patterns of hundreds of miRNAs in thousands of tumors covering seven types of cancer: uterine corpus adenocarcinoma, ovarian serous adenocarcinoma, breast adenocarcinoma, prostate adenocarcinoma, pancreatic adenocarcinoma, colorectal adenocarcinoma, and lung adenocarcinoma were analyzed. The results showed that miRNA expression patterns among these cancer types are highly correlated (0.874>ρ>0.974) and that miRNA expression in all seven cancer types is dominated by miRNAs belonging to the most evolutionarily ancient miRNA families. This raises the possibility that more ancient miRNAs are involved in the fundamental cell processes that are central to tumor evolution.

19.
Cardiovasc Res ; 102(1): 79-87, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24501329

RESUMEN

AIMS: Ischaemic preconditioning (IPC) is an adaptive mechanism that renders the myocardium resistant to injury from subsequent hypoxia. Although reactive oxygen species (ROS) contribute to both the early and late phases of IPC, their enzymatic source and associated signalling events have not yet been understood completely. Our objective was to investigate the role of the Nox1 NADPH oxidase in cardioprotection provided by IPC. METHODS AND RESULTS: Wild-type (WT) and Nox1-deficient mice were treated with three cycles of brief coronary occlusion and reperfusion, followed by prolonged occlusion either immediately (early IPC) or after 24 h (late IPC). Nox1 deficiency had no impact on the cardioprotection afforded by early IPC. In contrast, deficiency of Nox1 during late IPC resulted in a larger infarct size, cardiac remodelling, and increased myocardial apoptosis compared with WT hearts. Furthermore, expression of Nox1 in WT hearts increased in response to late IPC. Deficiency of Nox1 abrogated late IPC-mediated activation of cardiac nuclear factor-κB (NF-κB) and induction of tumour necrosis factor-α (TNF-α) in the heart and circulation. Finally, knockdown of Nox1 in cultured cardiomyocytes prevented TNF-α induction of NF-κB and the protective effect of IPC on hypoxia-induced apoptosis. CONCLUSIONS: Our data identify a critical role for Nox1 in late IPC and define a previously unrecognized link between TNF-α and NF-κB in mediating tolerance to myocardial injury. These findings have clinical significance considering the emergence of Nox1 inhibitors for the treatment of cardiovascular disease.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Animales , Modelos Animales de Enfermedad , Precondicionamiento Isquémico Miocárdico/métodos , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , NADPH Oxidasa 1 , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
Toxicol Appl Pharmacol ; 272(3): 736-45, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23917044

RESUMEN

Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect.


Asunto(s)
Autofagia/fisiología , Carcinoma de Células Escamosas/metabolismo , Citoprotección/fisiología , Receptores ErbB/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , NADPH Oxidasas/fisiología , Quinazolinas/farmacología , Autofagia/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/enzimología , Citoprotección/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib , Células HEK293 , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/enzimología , Humanos , NADPH Oxidasa 4 , Quinazolinas/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...